Analysis 1, Summer 2023

List 7

L'Hôpital's Rule, Taylor series and polynomials

168. Give an equation for the tangent line to $y = e^{3x}(\cos(4x))^5$ at x = 1.

169. Is $y = e^{\sin(x)}$ concave up or concave down when $x = \pi$?

170. Find the absolute extremes of $x \ln(x)$ on...

- (a) the interval $[0, \frac{1}{2}]$.
- (b) the interval [0, 1].
- (c) the interval [0, 2].
- (d) the interval [1, 2].

171. Find the inflection points of $f(x) = \frac{3}{10}x^5 - 5x^4 + 32x^3 - 96x^2 + 28$.

172. If f is a smooth function with

	-2						
\overline{f}	3	5	-3	7	8	9	12
f'	2	0	-1	-1	1	3	0
f''	3 2 0	4	1	-1	$\frac{-8}{3}$	0	1

answer the following:

- (a) Does f have a critical point at x = 0?
- (b) Does f have a local minimum at x = -1?
- (c) Does f have a local maximum at x = 4?
- (d) It it possible that f has an absolute minimum at x = -1?
- (e) It it possible that f has an absolute maximum at x = -1?
- (f) It it possible that f has an inflection point at x = 3?
- (g) It it possible that f has an inflection point at x = 4?

L'Hôpital's Rule: if $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ and $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

The same substitution works if $\lim_{x\to a} f(x) = \infty$ or $-\infty$ and $\lim_{x\to a} g(x) = \infty$ or $-\infty$. And also for one-sided limits and for $x\to\infty$ and $x\to-\infty$.

173. Calculate $\lim_{x \to 1} \frac{3x^3 + 4x^2 - 13x + 6}{2x^4 + x^3 - x^2 + x - 3}$ and $\lim_{x \to 4} \frac{\sin(\pi x)}{\ln(x - 3)}$.

174. Calculate the following limits:

(a)
$$\lim_{x \to 0^+} \frac{\ln(x)}{1/x}$$
 (b) $\lim_{x \to 0^+} x \ln(x)$ (c) $\lim_{x \to 0^+} e^{x \ln(x)}$ (d) $\lim_{x \to 0^+} x^x$

Hint for (c): recall that $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x))$ if f is continuous.

- 175. (a) Find $\lim_{x \to 1} \frac{x^2 18}{3x + 4}$.
- (b) Find $\lim_{x \to 1} \frac{2x}{3}$.
- (b) Why are the answers to (a) and (b) not equal?
- 176. Find $\lim_{x\to 0} \frac{2\sin(x) \sin(2x)}{x \sin(x)}$.
- 177. (a) Calculate $\lim_{n\to\infty} n \cdot \ln\left(1+\frac{1}{n}\right)$ using L'Hôpital.
 - (b) Calculate $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ using the fact that $f(n)=e^{\ln(f(n))}$ and therefore

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} e^{\ln(f(n))} = e^{\left(\lim_{n \to \infty} \ln(f(n))\right)}.$$

178. For the function $f(x) = x^2 e^{-x}$, find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to 0} f(x)$ and $\lim_{x \to -\infty} f(x)$.

For a function f(x), the degree-N Taylor polynomial around x = a is

$$\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^{n},$$

where $n! = n \cdot (n-1) \cdot \cdot \cdot 2 \cdot 1$ is a factorial and $f^{(n)}$ is the n^{th} derivative of f. Note that 0! = 1 and that $f^{(0)} = f$. In expanded form, this is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(N)}(a)}{N!}(x-a)^N.$$

- 179. (a) Calculate the functions f'(x) and f''(x) for $f(x) = x^{5/2}$.
 - (b) Calculate the numbers f(4), f'(4), and f''(4) for $f(x) = x^{5/2}$.
 - (c) Give the degree-2 Taylor polynomial for $x^{5/2}$ around x=4. (You may leave "(x-4)" in your answer; you do not have to expand it to " $x^2 + \dots$ ".)
- 180. Give the degree-3 Taylor polynomial for $e^x \cos(x)$ around x = 0. (You will first need to find f'(x), f''(x), f'''(x) and the numbers f(0), ..., f'''(0).
- 181. (a) Give the quadratic Taylor polynomial for \sqrt{x} around x=1.
 - (b) Plug x = 1.2 into your polynomial from part (a) to get a "quadratic approximation" to $\sqrt{1.2}$.
 - (c) Compare the quadratic approximation to the linear approximation from Task 82(a)-(c). Which is closer to the true value of $\sqrt{1.2} \approx 1.09545$?

The **Taylor series around** x = a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$. Here are Taylor¹ series around zero for some common functions

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \qquad \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

- 182. Give the Taylor series for $\frac{x^3}{1-x}$ around x=0.
- 183. Give the Taylor series for $\ln(1+x^2)$ around x=0.
- 184. Give the Taylor polynomial of degree 6 for $f(x) = \ln(x)$ around x = 1.
- 185. (a) Give the Taylor polynomial of degree 3 for $f(x) = \frac{x}{\cos(x)}$ around x = 0.
 - (b) Give the Taylor polynomial of degree 4 for $f(x) = \frac{\sin(x)}{x}$ around x = 0.
 - (c) Which more difficult—part (a) or part (b)?
- 186. On a single set of axes with $x \in [0, 4]$ and $y \in [-1, 2]$, draw the curve $y = \ln(x)$, the tangent line to $y = \ln(x)$ at the point $(2, \ln 2)$, and the graph of the quadratic Taylor polynomial for ln(x) around x = 2.

An **anti-derivative** of f(x) is a function whose derivative is f(x). In symbols, F(x) is an anti-derivative of f(x) if F'(x) = f(x).

- 187. (a) Give an anti-derivative of $10x^9$. That is, give a function F(x) for which $F'(x) = 10x^9$.
 - (b) Give another anti-derivative of $10x^9$.
 - (c) Give another anti-derivative of $10x^9$.
 - (d) Give another anti-derivative of $10x^9$.
- 188. Give an anti-derivative of $\sin(x)$.
- 189. Give an anti-derivative for each of the following functions:
 - (a) x^{3}

(e) $-3x^{15}$

(i) $\frac{-4}{3}x^7$

(b) $12x^5$

(j) $5\sin(x)$

(c) $12x^4$

- (f) $\frac{1}{2}x^2$ (g) x^{5000}
- (k) $2\cos(x)$

(d) x^{15}

(h) $\frac{3}{5}x^{12}$

- $(\ell) e^x$
- 190. Give an anti-derivative of $3x^2\cos(x^3+9)$. Hint: Think about the Chain Rule.

¹ A Taylor series around zero is also called a "Maclaurin series".