List 7

L'Hôpital's Rule, Taylor series and polynomials

168. Give an equation for the tangent line to $y=e^{3 x}(\cos (4 x))^{5}$ at $x=1$.
169. Is $y=e^{\sin (x)}$ concave up or concave down when $x=\pi$?
170. Find the absolute extremes of $x \ln (x)$ on...
(a) the interval $\left[0, \frac{1}{2}\right]$.
(b) the interval $[0,1]$.
(c) the interval $[0,2]$.
(d) the interval $[1,2]$.
171. Find the inflection points of $f(x)=\frac{3}{10} x^{5}-5 x^{4}+32 x^{3}-96 x^{2}+28$.
172. If f is a smooth function with

x	-2	-1	0	1	2	3	4
f	3	5	-3	7	8	9	12
f^{\prime}	2	0	-1	-1	1	3	0
$f^{\prime \prime}$	0	4	1	-1	$\frac{-8}{3}$	0	1

answer the following:
(a) Does f have a critical point at $x=0$?
(b) Does f have a local minimum at $x=-1$?
(c) Does f have a local maximum at $x=4$?
(d) It it possible that f has an absolute minimum at $x=-1$?
(e) It it possible that f has an absolute maximum at $x=-1$?
(f) It it possible that f has an inflection point at $x=3$?
(g) It it possible that f has an inflection point at $x=4$?

L'Hôpital's Rule: if $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

The same substitution works if $\lim _{x \rightarrow a} f(x)=\infty$ or $-\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$ or $-\infty$. And also for one-sided limits and for $x \rightarrow \infty$ and $x \rightarrow-\infty$.
173. Calculate $\lim _{x \rightarrow 1} \frac{3 x^{3}+4 x^{2}-13 x+6}{2 x^{4}+x^{3}-x^{2}+x-3}$ and $\lim _{x \rightarrow 4} \frac{\sin (\pi x)}{\ln (x-3)}$.
174. Calculate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}$
(b) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(c) $\lim _{x \rightarrow 0^{+}} e^{x \ln (x)}$
(d) $\lim _{x \rightarrow 0^{+}} x^{x}$

Hint for (c): recall that $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is continuous.
175. (a) Find $\lim _{x \rightarrow 1} \frac{x^{2}-18}{3 x+4}$. (b) Find $\lim _{x \rightarrow 1} \frac{2 x}{3}$.
(b) Why are the answers to (a) and (b) not equal?
176. Find $\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)}$.
177. (a) Calculate $\lim _{n \rightarrow \infty} n \cdot \ln \left(1+\frac{1}{n}\right)$ using L'Hôpital.
(b) Calculate $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ using the fact that $f(n)=e^{\ln (f(n))}$ and therefore

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} e^{\ln (f(n))}=e^{\left(\lim _{n \rightarrow \infty} \ln (f(n))\right)} .
$$

178. For the function $f(x)=x^{2} e^{-x}$, find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.

For a function $f(x)$, the degree- \boldsymbol{N} Taylor polynomial around $\boldsymbol{x}=\boldsymbol{a}$ is

$$
\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where $n!=n \cdot(n-1) \cdots 2 \cdot 1$ is a factorial and $f^{(n)}$ is the $n^{\text {th }}$ derivative of f. Note that $0!=1$ and that $f^{(0)}=f$. In expanded form, this is

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N} .
$$

179. (a) Calculate the functions $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $f(x)=x^{5 / 2}$.
(b) Calculate the numbers $f(4), f^{\prime}(4)$, and $f^{\prime \prime}(4)$ for $f(x)=x^{5 / 2}$.
(c) Give the degree-2 Taylor polynomial for $x^{5 / 2}$ around $x=4$. (You may leave " $(x-4)$ " in your answer; you do not have to expand it to "__ $x^{2}+\ldots$ ".)
180. Give the degree-3 Taylor polynomial for $e^{x} \cos (x)$ around $x=0$. (You will first need to find $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and the numbers $f(0), \ldots, f^{\prime \prime \prime}(0)$.)
181. (a) Give the quadratic Taylor polynomial for \sqrt{x} around $x=1$.
(b) Plug $x=1.2$ into your polynomial from part (a) to get a "quadratic approximation" to $\sqrt{1.2}$.
(c) Compare the quadratic approximation to the linear approximation from Task 82 (a)-(c). Which is closer to the true value of $\sqrt{1.2} \approx 1.09545$?

The Taylor series around $\boldsymbol{x}=\boldsymbol{a}$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. Here are Taylor ${ }^{1}$ series around zero for some common functions:

$$
\begin{array}{rlrl}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+\cdots & \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots & &
\end{array}
$$

182. Give the Taylor series for $\frac{x^{3}}{1-x}$ around $x=0$.
183. Give the Taylor series for $\ln \left(1+x^{2}\right)$ around $x=0$.
184. Give the Taylor polynomial of degree 6 for $f(x)=\ln (x)$ around $x=1$.
185. (a) Give the Taylor polynomial of degree 3 for $f(x)=\frac{x}{\cos (x)}$ around $x=0$.
(b) Give the Taylor polynomial of degree 4 for $f(x)=\frac{\sin (x)}{x}$ around $x=0$.
(c) Which more difficult-part (a) or part (b)?
186. On a single set of axes with $x \in[0,4]$ and $y \in[-1,2]$, draw the curve $y=\ln (x)$, the tangent line to $y=\ln (x)$ at the point $(2, \ln 2)$, and the graph of the quadratic Taylor polynomial for $\ln (x)$ around $x=2$.

An anti-derivative of $f(x)$ is a function whose derivative is $f(x)$.
In symbols, $F(x)$ is an anti-derivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
187. (a) Give an anti-derivative of $10 x^{9}$.

That is, give a function $F(x)$ for which $F^{\prime}(x)=10 x^{9}$.
(b) Give another anti-derivative of $10 x^{9}$.
(c) Give another anti-derivative of $10 x^{9}$.
(d) Give another anti-derivative of $10 x^{9}$.
188. Give an anti-derivative of $\sin (x)$.
189. Give an anti-derivative for each of the following functions:
(a) x^{3}
(e) $-3 x^{15}$
(i) $\frac{-4}{3} x^{7}$
(b) $12 x^{5}$
(f) $\frac{1}{2} x^{2}$
(j) $5 \sin (x)$
(c) $12 x^{4}$
(g) x^{5000}
(k) $2 \cos (x)$
(d) x^{15}
(h) $\frac{3}{5} x^{12}$
($\ell) e^{x}$
190. Give an anti-derivative of $3 x^{2} \cos \left(x^{3}+9\right)$. Hint: Think about the Chain Rule.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ Taylor series around zero is also called a "Maclaurin series".

